» »

Дольные единицы. Единицы измерения Предпосылки к появлению, предэксплуатационные испытания

28.12.2023

Этот урок не будет новым для новичков. Все мы слышали со школы такие вещи как сантиметр, метр, километр. А когда речь заходила о массе, обычно говорили грамм, килограмм, тонна.

Сантиметры, метры и километры; граммы, килограммы и тонны носят одно общее название — единицы измерения физических величин .

В данном уроке мы рассмотрим наиболее популярные единицы измерения, но не будем сильно углубляться в эту тему, поскольку единицы измерения уходят в область физики. Сегодня мы вынуждены изучить часть физики, поскольку нам это необходимо для дальнейшего изучения математики.

Содержание урока

Единицы измерения длины

Для измерения длины предназначены следующие единицы измерения:

  • миллиметры;
  • сантиметры;
  • дециметры;
  • метры;
  • километры.

миллиметр (мм). Миллиметры можно увидеть даже воочию, если взять линейку, которой мы пользовались в школе каждый день

Подряд идущие друг за другом маленькие линии это и есть миллиметры. Точнее, расстояние между этими линиями равно одному миллиметру (1 мм):

сантиметр (см). На линейке каждый сантиметр обозначен числом. К примеру наша линейка, которая была на первом рисунке, имела длину 15 сантиметров. Последний сантиметр на этой линейке выделен числом 15.

В одном сантиметре 10 миллиметров. Между одним сантиметром и десятью миллиметрами можно поставить знак равенства, поскольку они обозначают одну и ту же длину:

1 см = 10 мм

Вы можете сами убедиться в этом, если посчитаете количество миллиметров на предыдущем рисунке. Вы обнаружите, что количество миллиметров (расстояний между линиями) равно 10.

Следующая единица измерения длины это дециметр (дм). В одном дециметре десять сантиметров. Между одним дециметром и десятью сантиметрами можно поставить знак равенства, поскольку они обозначают одну и ту же длину:

1 дм = 10 см

Вы можете убедиться в этом, если посчитаете количество сантиметров на следующем рисунке:

Вы обнаружите, что количество сантиметров равно 10.

Следующая единица измерения это метр (м). В одном метре десять дециметров. Между одним метром и десятью дециметрами можно поставить знак равенства, поскольку они обозначают одну и ту же длину:

1 м = 10 дм

К сожалению, метр нельзя проиллюстрировать на рисунке, потому что он достаточно великоват. Если вы хотите увидеть метр в живую, возьмите рулетку. Она есть у каждого в доме. На рулетке один метр будет обозначен как 100 см. Это потому что в одном метре десять дециметров, а в десяти дециметрах сто сантиметров:

1 м = 10 дм = 100 см

100 получается путём перевода одного метра в сантиметры. Это отдельная тема, которую мы рассмотрим чуть позже. А пока перейдём к следующей единице измерения длины, которая называется километр.

Километр считается самой большой единицей измерения длины. Есть конечно и другие более старшие единицы, такие как мегаметр, гигаметр тераметр, но мы не будем их рассматривать, поскольку для дальнейшего изучения математики нам достаточно и километра.

В одном километре тысяча метров. Между одним километром и тысячью метрами можно поставить знак равенства, поскольку они обозначают одну и ту же длину:

1 км = 1000 м

В километрах измеряются расстояния между городами и странами. К примеру, расстояние от Москвы до Санкт-Петербурга около 714 километров.

Международная система единиц СИ

Международная система единиц СИ — это некоторый набор общепринятых физических величин.

Основное предназначение международной системы единиц СИ — достижение договоренностей между странами.

Мы знаем, что языки и традиции стран мира различны. С этим ничего не поделать. Но законы математики и физики одинаково работают везде. Если в одной стране «дважды два будет четыре», то и в другой стране «дважды два будет четыре».

Основная проблема заключалась в том, что для каждой физической величины существует несколько единиц измерения. К примеру, мы сейчас узнали, что для измерения длины существуют миллиметры, сантиметры, дециметры, метры и километры. Если несколько ученых, говорящих на разных языках, соберутся в одном месте для решения какой-нибудь задачи, то такое большое многообразие единиц измерения длины может породить между этими учеными противоречия.

Один ученый будет заявлять, что в их стране длина измеряется в метрах. Второй может сказать, что в их стране длина измеряется в километрах. Третий может предложить свою единицу измерения.

Поэтому была создана международная система единиц СИ. СИ это аббревиатура от французского словосочетания Le Système International d’Unités, SI (что в переводе на русский означает — международная система единиц СИ).

В СИ приведены наиболее популярные физические величины и для каждой из них определена своя общепринятая единица измерения. К примеру, во всех странах при решении задач условились, что длину будут измерять в метрах. Поэтому, при решении задач, если длина дана в другой единице измерения (например, в километрах), то её обязательно нужно перевести в метры. О том, как переводить одну единицу измерения в другую, мы поговорим немного позже. А пока нарисуем свою международную систему единиц СИ.

Наш рисунок будет представлять собой таблицу физических величин. Каждую изученную физическую величину мы будем включать в нашу таблицу и указывать ту единицу измерения, которая принята во всех странах. Сейчас мы изучили единицы измерения длины и узнали, что в системе СИ для измерения длины определены метры. Значит наша таблица будет выглядеть так:

Единицы измерения массы

Масса – это величина, обозначающая количество вещества в теле. В народе массу тела называют весом. Обычно, когда что-либо взвешивают, говорят «это весит столько-то килограмм» , хотя речь идёт не о весе, а о массе этого тела.

Вместе с тем, масса и вес это разные понятия. Вес — это сила с которой тело действует на горизонтальную опору. Вес измеряется в ньютонах. А масса это величина, показывающая количество вещества в этом теле.

Но ничего страшного нет в том, если вы назовёте массу тела весом. Даже в медицине говорят «вес человека» , хотя речь идёт о массе человека. Главное быть в курсе, что это разные понятия

Для измерения массы используются следующие единицы измерения:

  • миллиграммы;
  • граммы;
  • килограммы;
  • центнеры;
  • тонны.

Самая маленькая единица измерения это миллиграмм (мг). Миллиграмм скорее всего вы никогда не примените на практике. Их применяют химики и другие ученые, которые работают с мелкими веществами. Для вас достаточно знать, что такая единица измерения массы существует.

Следующая единица измерения это грамм (г). В граммах принято измерять количество того или иного продукта при составлении рецепта.

В одном грамме тысяча миллиграммов. Между одним граммом и тысячью миллиграммами можно поставить знак равенства, поскольку они обозначают одну и ту же массу:

1 г = 1000 мг

Следующая единица измерения это килограмм (кг). Килограмм это общепринятая единица измерения. В ней измеряется всё что угодно. Килограмм включен в систему СИ. Давайте и мы включим в нашу таблицу СИ ещё одну физическую величину. Она у нас будет называться «масса»:

В одном килограмме тысяча граммов. Между одним килограммом и тысячью граммами можно поставить знак равенства, поскольку они обозначают одну и ту же массу:

1 кг = 1000 г

Следующая единица измерения это центнер (ц). В центнерах удобно измерять массу урожая, собранного с небольшого участка или массу какого-нибудь груза.

В одном центнере сто килограммов. Между одним центнером и ста килограммами можно поставить знак равенства, поскольку они обозначают одну и ту же массу:

1 ц = 100 кг

Следующая единица измерения это тонна (т). В тоннах обычно измеряются большие грузы и массы больших тел. Например, масса космического корабля или автомобиля.

В одной тонне тысяча килограмм. Между одной тонной и тысячью килограммами можно поставить знак равенства, поскольку они обозначают одну и ту же массу:

1 т = 1000 кг

Единицы измерения времени

Что такое время думаем объяснять не нужно. Каждый знает что из себя представляет время и зачем оно нужно. Если мы откроем дискуссию на то, что такое время и попытаемся дать ему определение, то начнем углубляться в философию, а это нам сейчас не нужно. Лучше начнём с единиц измерения времени.

Для измерения времени предназначены следующие единицы измерения:

  • секунды;
  • минуты;
  • часы;
  • сутки.

Самая маленькая единица измерения это секунда (с). Есть конечно и более маленькие единицы такие как миллисекунды, микросекунды, наносекунды, но их мы рассматривать не будем, поскольку на данный момент в этом нет смысла.

В секундах измеряются различные показатели. Например, за сколько секунд спортсмен пробежит 100 метров. Секунда включена в международную систему единиц СИ для измерения времени и обозначается как «с». Давайте и мы включим в нашу таблицу СИ ещё одну физическую величину. Она у нас будет называться «время»:

минута (м). В одной минуте 60 секунд. Между одной минутой и шестьюдесятью секундами можно поставить знак равенства, поскольку они обозначают одно и то же время:

1 м = 60 с

Следующая единица измерения это час (ч). В одном часе 60 минут. Между одним часом и шестьюдесятью минутами можно поставить знак равенства, поскольку они обозначают одно и то же время:

1 ч = 60 м

К примеру, если мы изучали этот урок один час и нас спросят сколько времени мы потратили на его изучение, мы можем ответить двумя способами: «мы изучали урок один час» или так «мы изучали урок шестьдесят минут» . В обоих случаях, мы ответим правильно.

Следующая единица измерения времени это сутки . В сутках 24 часа. Между одними сутками и двадцатью четырьмя часами можно поставить знак равенства, поскольку они обозначают одно и то же время:

1 сут = 24 ч

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

- (единица языка, языковая единица) Отрезок речи, регулярно воспроизводимый как определенгое единство содержания и выражения. Единица фонетическая (фонема). Единица морфологическая (морфема). Единица синтаксическая (предложение и словосочетание).… … Словарь лингвистических терминов

Атомная единица массы (а.е.м.). Единица, используемая для выражения масс атомов, молекул и элементарных частиц и равная 1/12 массы нуклида углерода 12; иногда её приравнивают к 1/16 массы наиболее распространённого изотопа кислорода 16. основная… … Термины атомной энергетики

Один предмет, зерно, штука, экземпляр, пример, голова, душа, лицо, индивид (индивидуум), неделимое, особь, особа, персона, монада. Раскинь, почем на брата придется. Ср … Словарь синонимов

Единица - Единица ♦ Unité Факт существования в качестве одного. Не путать с единственностью (фактом существования в качестве единственного) и c единством (фактом объединения в одно целое), хотя и то и другое немыслимы без единицы. Если бы не единица,… … Философский словарь Спонвиля

ЕДИНИЦА, ы, жен. 1. В математике: действительное число, от умножения на к рое любое число не меняется. 2. Первый разряд многозначных чисел (от 1 до 9) (спец.). 3. Цифра, обозначающая число «1». Выписать тушью единицу. 4. Самая низкая школьная… … Толковый словарь Ожегова

Жен. один, первый по счету, и | числительный знак, выражающий число это, 1; | всякая вещь или предмет отдельно, по себе взятый; всякая мера, принятая в этом случае для измеренья чего либо; считая расстоянье саженями, одна сажень будет единицею;… … Толковый словарь Даля

единица - ЕДИНИЦА, разг. кол … Словарь-тезаурус синонимов русской речи

Единица - ЕДИНИЦА, 1) наименьшее из натуральных чисел. 2) Мнимая единица число i, квадрат которого равен отрицательной единице: . … Иллюстрированный энциклопедический словарь

Наименьшее из натуральных чисел n = 1. В современной математике понятие единицы (единичного элемента) рассматривают в алгебраических структурах более общей природы (напр., группах) … Большой Энциклопедический словарь

- (иноск.) существо, (отдѣльно отъ другихъ, одинаковыхъ съ нимъ). Ср. Общество выдѣляло изъ себя замѣчательныхъ, даже блестящихъ единицъ въ разныхъ сферахъ дѣятельности.... Гончаровъ. Записки о Бѣлинскомъ. Ср. И вы чувствуюете себя единицей какой… … Большой толково-фразеологический словарь Михельсона (оригинальная орфография)

Книги

  • Единица шахматного веса
  • Единица шахматного веса , Ткаченко Сергей. Чемпион мира по шахматной композиции и один из лучших знатоков шахматного этюда Сергей Ткаченко…

ЕДИНИЦЫ ИЗМЕРЕНИЯ , единицы измерения физических величин . Е. и. возникли на ранних стадиях развития материальной культуры и первоначально охватывали незначительное число физических величин (длина, масса, площадь, объем), различных в разных странах и географических р-нах. Образовалось большое количество различных по размерам и наименованиям единиц. Расширение торговых связей между народами, развитие науки и техники привели к необходимости унификации Е. и. и создания системы единиц. В 1795 г. во Франции впервые была разработана и утверждена специальным правительственным декретом метрическая система мер, в к-рой за единицу длины был принят метр, представляющий собой десятимиллионную часть 1/4 длины парижского географического меридиана. Это решение было обусловлено желанием положить в основу системы единиц такую единицу, к-рую можно увязать с практически неизменным объектом природы. Размеры и наименования других единиц в этой системе были выбраны с учетом возможности их последующего использования и в других странах. В 1875 г. 17 стран, в т. ч. и Россия, подписали Метрическую конвенцию для обеспечения международного единства измерений и усовершенствования метрической системы мер. В России эта система единиц была допущена к применению (в необязательном порядке) в 1899 г. и введена в качестве обязательной декретом СНК РСФСР от 14 сентября 1918 г., а для СССР - постановлением СНК СССР от 21 июля 1925 г. К 1972 г. Метрическую конвенцию подписало 41 государство. Создано Международное бюро мер и весов, организован Международный комитет мер и весов, регулярно созываются генеральные конференции по мерам и весам.

На основе метрической системы мер возникли частные, охватывающие отдельные разделы физики или техники системы единиц, а также внесистемные единицы. При этом системные Е. и. подразделяются на основные единицы (напр., метр, секунда, килограмм), выбираемые произвольно, и производные единицы (напр., метр в секунду, килограмм на кубический метр и т. д.), образуемые по уравнениям связи между величинами. Внесистемные Е. и. исторически образованы вне связи с построением систем единиц. Эти единицы делят на независимые (определяемые без помощи других единиц, напр, градус Цельсия, равный 0,01 промежутка между температурами таяния льда и кипения воды) и произвольно выбранные, но определяемые через другие единицы (напр., лошадиная сила, равная 735,5 Вт; бар, равный 10 Н/м, и т. д.); нек-рым единицам присвоено наименование в честь какого-либо выдающегося ученого (напр., дальтон - в честь англ. химика и физика Дж. Дальтона; один дальтон численно равен массе одного атома водорода).

В целях практического удобства выражения величин, значительно отличающихся от основных единиц измерения, используют кратные и дольные единицы (напр., килограмм и миллиграмм - тысяча грамм или тысячная доля грамма соответственно). В метрических системах Е. и. кратные и дольные единицы (за исключением единиц времени и угла) образуются умножением системной единицы на 10 n , где n - положительное или отрицательное число (напр., 1 кг = 10 3 г, 1 г = 10 3 кг). Каждому из таких чисел (см. ниже табл. 9) соответствует одна из принятых десятичных приставок (кило-, мега- и т. д.).

В практику различных областей науки и техники вошло шесть основных систем единиц (МКГСС, МКСА, МКСГ, МСС, МКС и СГС), на базе которых возникла, а начиная с 1960 г. стала преимущественно применяться во все большем числе стран Международная система единиц - Sistem International - SI (СИ).

В системе единиц МКГСС основными единицами являются метр (единица длины), килограмм-сила (единица силы), секунда (единица времени); система не согласована (не когерентна) с единицами электрических и магнитных величин. С принятием Международной системы единиц эта система постепенно выходит из употребления. При необходимости систему МКГСС применяют дополнительно к Международной системе единиц или к другим единицам, допускаемым к применению.

Система единиц МКСА - система единиц электрических и магнитных величин. Основные единицы: метр (единица длины), килограмм (единица массы), секунда (единица времени) и ампер (единица силы электрического тока). Система единиц МКСА вошла составной частью в Международную систему единиц.

Система единиц МКСГ - система единиц тепловых величин. Основные единицы: метр (единица длины), килограмм (единица массы), секунда (единица времени), кельвин (единица термодинамической температуры). Эта система единиц также вошла в Международную систему единиц.

Система единиц МСС - система единиц для световых величин. Основными единицами в этой системе являются метр (единица длины), секунда (единица времени) и свеча (единица силы света). Система единиц МСС - часть Международной системы единиц.

Системы единиц МКС - системы единиц для механических и акустических величин. Основные единицы: метр (единица длины), килограмм (единица массы), секунда (единица времени). Системы единиц МКС вошли в качестве составных частей в Международную систему единиц.

Системы единиц СГС - системы единиц механических, акустических, электрических и магнитных величин. Основные единицы: сантиметр (единица длины), грамм (единица массы) и секунда (единица времени). В рамках систем СГС некоторые единицы получили собственное наименование: дина (единица силы), эрг (единица работы и энергии), пуаз (единица динамической или просто вязкости), стокс (единица кинематической вязкости), максвелл (единица магнитного потока), гаусс (единица магнитной индукции), гильберт (единица магнитодвижущей силы), эрстед (единица напряженности магнитного поля). На практике применяют семь видов систем СГС для электрических и магнитных величин: электростатическая - СГСЭ (диэлектрическая проницаемость вакуума принята равной безразмерной единице); электромагнитная - СГСМ (магнитная проницаемость вакуума принята за безразмерную единицу); симметричная СГС, или система Гаусса (электрические единицы совпадают с электрическими единицами системы СГСЭ, а магнитные - с магнитными единицами СГСМ); СГСе0 (магнитная проницаемость вакуума - четвертая основная единица); СГСФ (четвертая основная единица - единица электрического заряда - франклин); СГСБ (четвертая основная единица - единица силы электрического тока - био).

В физике и технике преимущественно применяют симметричную систему СГС.

В 1960 г. XI Генеральная конференция по мерам и весам приняла Международную систему единиц. С 1 января 1963 г. в СССР Международная система единиц была рекомендована для предпочтительного применения во всех областях науки, техники и народного хозяйства (ГОСТ 9867-61 «Международная система единиц») с целью унификации единиц измерения. В основу Международной системы единиц положены семь основных единиц (длины, массы, времени, силы электрического тока, термодинамической температуры, количества вещества и силы света), а также две дополнительные единицы (для плоского угла и телесного угла). Все остальные единицы измерения являются их производными и образуются по уравнениям связи между физ. величинами, соответствующими простейшей форме тел или явлений. Принятие для всех стран единой Международной системы единиц физ. величин призвано устранить трудности, связанные с переводом численных значений физ. величин, а также констант из какой-либо действующей системы единиц (СГС, МКС и др.) в другую.

Международная организация по вопросам образования, науки и культуры при ООН (ЮНЕСКО) предложила всем странам - членам этой организации - принять Международную систему единиц.

Основные правила обозначения единиц Meждународной системы и пользования ими.

1. Обозначение единиц, наименование которых дано по имени ученого, предусматривает написание их с прописной буквы, напр.: ампер - А, вольт - В, ватт - Вт, рентген - P и т. д. Все остальные обозначения пишут со строчной буквы.

2. Применение сокращенных обозначений вместо полных наименований единиц, а также помещение обозначений единиц в строку с формулами, выражающими зависимость между величинами, не допускается. Напр., следует писать «сила выражается в ньютонах», «сила составляет 1 Н», но нельзя писать: «сила выражается в Н».

3. Наименование Е. и. при цифре не склоняют. Напр., 10 моль, 10 Ом, но не 10 молей и не 10 омов.

4. Обозначение единицы помещают в строку с числовым значением величины без переноса на следующую строку; между последней цифрой и буквенным обозначением единицы оставляют пропуск.

5. Обозначение единиц, входящих в произведение, разделяется точками по средней линии, напр. Н-м (ньютон-метр). В обозначении единиц, образуемых делением, применяют косую линию, напр, кг/м 3 (килограмм на кубический метр). При этом произведение единиц в знаменателе заключают в скобки, напр. Вт (м 2 К) - ватт на метр квадратный-кельвин.

Ниже (табл. 1-8) приводятся основные, дополнительные, а также производные и некоторые наиболее укоренившиеся единицы (устаревшие, внесистемные и др.). При пользовании таблицами следует иметь в виду следующее:

а) единицы измерений Международной системы выделены полужирным шрифтом, единицы измерений, не вошедшие в нее, даны обычным шрифтом, а единицы измерений, применяемые ранее, но подлежащие изъятию из практического употребления, даны со звездочкой;

б) поскольку до принятия Международной системы единиц буквенные обозначения единиц измерения во многих отечественных изданиях, и в частности в изданиях БМЭ, давались курсивом, то обозначение соответствующих единиц измерения вначале дается по Международной системе единиц, т. е. прямым шрифтом (без курсива), а рядом в скобках обозначение, применяемое ранее, курсивом, напр, с (сек), Вт (вт), P (р) и т. д.;

в) понятие размерности (т. е. условного обозначения величин), представленное в одной из граф таблиц 1-8, отражает связь данной физ. величины с основными величинами системы единиц (табл. 1) и является произведением основных величин, возведенных в соответствующие степени. Напр., размерность силы в Международной системе единиц представляет собой выражение:

LMT -2 или м кг/с 2

где L, М и T - размерности длины, массы и времени (метр, килограмм и секунда соответственно). Все члены уравнения, описывающего какой-либо физ. процесс, должны иметь одинаковую размерность;

г) все принятые международные сокращения единиц измерения даются в соответствии с Международной системой единиц.

В табл. 1-9 перечислены основные, дополнительные, важнейшие производные единицы Международной системы единиц (СИ), а также некоторые внесистемные единицы измерения, не вошедшие в систему СИ.

Дополнительные указания к пользованию таблицами

1. Полужирным шрифтом обозначены единицы Международной системы единиц (СИ).

2. Звездочкой обозначены единицы измерения, не вошедшие в Международную систему единиц и подлежащие изъятию.

3. Единицы измерения, не вошедшие в Международную систему единиц, но допускаемые к применению, даются обычным прямым шрифтом.

4. Обозначения соответствующих единиц измерения вначале даются по Международной системе единиц прямым шрифтом без курсива, а рядом в скобках приводятся обозначения, применяемые ранее, напр.: с (сек), Вт (вт), м (м) и т. д.

Таблица 1. ОСНОВНЫЕ И ДОПОЛНИТЕЛЬНЫЕ ЕДИНИЦЫ ИЗМЕРЕНИЙ МЕЖДУНАРОДНОЙ СИСТЕМЫ ЕДИНИЦ (СИ). (Пояснения к таблице - см. текст статьи)

Величина

Наименование

Определение

Размерность

Обозначения

международное

ОСНОВНЫЕ ЕДИНИЦЫ

Длина, равная 1650763,73 длин волн излучения в вакууме, соответствующего переходу между уровнями 2р10 и 5d5 атома криптона-86

килограмм

Представлен массой международного платиноиридиевого прототипа килограмма

Отрезок времени, равный 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133

Сила электрического тока

Величина, равная силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии одного метра один от другого в пустоте, вызвал бы между этими проводниками силу, равную 2 10 -7 единиц силы системы МКС на каждый метр длины

Термодинамическая температура (температура)

(градус Кельвина)

Величина, составляющая 1/273,16 часть термодинамической температуры тройной точки воды

Количество вещества

Количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 пг

моль (моль)

Сила света

Сила света, испускаемого с поверхности площадью 1/600 000 м 2 полного излучателя в перпендикулярном направлении при температуре излучателя, равной температуре затвердевания платины при давлении 101325 Па

ДОПОЛНИТЕЛЬНЫЕ ЕДИНИЦЫ

Плоский угол

Центральный угол, соответствующий дуге, длина к-рой равна ее радиусу

Телесный угол

стерадиан

Величина телесного угла, вырезающего на сфере, описанной вокруг вершинного угла, поверхность, площадь к-рой равна квадрату радиуса сферы

Таблица 2. Важнейшие единицы механических величин, пространства и времени, продолжение

Таблица 3. Важнейшие единицы электрических и магнитных величин, продолжение

С 1963 г. в СССР (ГОСТ 9867-61 «Международная система единиц») с целью унификации единиц измерения во всех областях науки и техники рекомендована для практического использования международная (интернациональная) система единиц (СИ, SI) - это система единиц измерения физических величин, принятая XI Генеральной конференцией по мерам и весам в 1960 г. В основу ее положены 6 основных единиц (длина, масса, время, сила электрического тока, термодинамическая температура и сила света), а также 2 дополнительные единицы (плоский угол, телесный угол); все остальные единицы, приводимые в таблице, являются их производными. Принятие единой для всех стран международной системы единиц призвано устранить трудности, связанные с переводами численных значений физических величин, а также различных констант из какой-либо одной, действующей в настоящее время системы (СГС, МКГСС, МКС А и т. д.), в другую.

Наименование величины Единицы измерения; значения в системе СИ Обозначения
русское международное
I. Длина, масса, объем, давление, температура
Метр - мера длины, численно равная длине международного эталона метра; 1 м=100 см (1·10 2 см)=1000 мм (1·10 3 мм)
м m
Сантиметр = 0,01 м (1·10 -2 м)=10 мм см cm
Миллиметр = 0,001 м(1·10 -3 м) = 0,1 см=1000 мк (1·10 3 мк) мм mm
Микрон (микрометр) = 0,001 мм (1·10 -3 мм) =
0, 0001 см (1·10 -4 см)= 10 000
мк μ
Ангстрем=одной десятимиллиардной метра (1·10 -10 м) или одной стомиллионной сантиметра (1·10 -8 см) Å Å
Масса Килограмм - основная единица массы в метрической системе мер и системе СИ, численно равная массе международного эталона килограмма; 1 кг=1000 г
кг kg
Грамм=0,001 кг (1·10 -3 кг)
г g
Тонна= 1000 кг (1·10 3 кг) т t
Центнер=100 кг (1·10 2 кг)
ц
Карат - внесистемная единица массы, численно равная 0,2 г ct
Гамма=одной миллионной грамма (1·10 -6 г) γ
Объем Литр=1,000028 дм 3 = 1,000028·10 -3 м 3 л l
Давление Физическая, или нормальная, атмосфера - давление, уравновешиваемое ртутным столбом высотой 760 мм при температуре 0°= 1,033 ат= = 1,01·10 -5 н/м 2 =1,01325 бар= 760 тор= 1, 033 кгс/см 2
атм atm
Техническая атмосфера - давление, равное 1 кгс/смг = 9,81·10 4 н/м 2 =0,980655 бар =0,980655·10 6 дин/см 2 = 0, 968 атм= 735 тор ат at
Миллиметр ртутного столба= 133,32 н/м 2 мм рт. ст. mm Hg
Тор - наименование внесистемной единицы измерения давления, равное 1 мм рт. ст.; дано в честь итальянского ученого Э. Торричелли тор
Бар - единица атмосферного давления = 1·10 5 н/м 2 = 1·10 6 дин/см 2 бар bar
Давление (звука) Бар-единица звукового давления (в акустике): бар - 1 дин/см 2 ; в настоящее время в качестве единицы звукового давления рекомендована единица со значением 1 н/м 2 = 10 дин/см 2
бар bar
Децибел - логарифмическая единица измерения уровня избыточного звукового давления, равная 1/10 единицы измерения избыточного давления- бела дБ db
Температура Градус Цельсия; температура в °К (шкала Кельвина), равна температуре в °С (шкала Цельсия) + 273,15 °С °С °С
II. Сила, мощность, энергия, работа, количество теплоты, вязкость
Сила Дина - единица силы в системе СГС(см-г-cек.), при которой телу с массой в 1 г сообщается ускорение, равное 1 см/сек 2 ; 1 дин- 1·10 -5 н дин dyn
Килограмм-сила- сила, сообщающая телу с массой 1 кг ускорение, равное 9,81 м/сек 2 ; 1кг=9,81 н=9,81·10 5 дин кГ, кгс
Мощность Лошадиная сила =735,5 Вт л. с. HP
Энергия Электрон-вольт - энергия, которую приобретает электрон при перемещении в электрическом поле в вакууме между точками с разностью потенциалов в 1 в; 1 эв= 1,6·10 -19 дж. Допускается применение кратных единиц: килоэлектрон-вольт (Кзв)=10 3 эв и мегаэлектрон-вольт (Мэв)= 10 6 эв. В современных энергию частиц измеряют в Бэв - миллиардах (биллионах) эв; 1 Бзв=10 9 эв
эв eV
Эрг=1·10 -7 дж; эрг также используется как единица измерения работы, численно равная работе, совершаемой силой в 1 дин на пути в 1 см эрг erg
Работа Килограмм-сила-метр (килограммометр) - единица работы, численно равная работе, совершаемой постоянной силой в 1 кГ при перемещении точки приложения этой силы на расстояние в 1 м по ее направлению; 1кГм=9,81 дж (одновременно кГм является мерой энергии) кГм, кгс·м kGm
Количество теплоты Калория - внесистемная единица измерения количества теплоты, равного количеству теплоты, необходимого для нагревания 1 г воды от 19,5 °С до 20,5 ° С. 1 кал=4,187 дж; распространена кратная единица килокалория (ккал, kcal), равная 1000 кал кал cal
Вязкость (динамическая) Пуаз - единица вязкости в системе единиц СГС; вязкость, при которой в слоистом потоке с градиентом скорости, равным 1 сек -1 на 1 см 2 поверхности слоя, действует сила вязкости в 1 дин; 1 пз = 0,1 н·сек/м 2 пз P
Вязкость (кинематическая) Стокс - единица кинематической вязкости в системе СГС; равна величине вязкости жидкости, имеющей плотность 1 г/см 3 , оказывающей сопротивление силой в 1 дин взаимному перемещению двух слоев жидкости площадью 1 см 2 , находящихся на расстоянии 1 см друг от друга и перемещающихся друг относительно друга со скоростью 1 см в сек ст St
III. Магнитный поток, магнитная индукция, напряженность магнитного поля, индуктивность, электрическая емкость
Магнитный поток Максвелл - единица измерения магнитного потока в системе СГС; 1 мкс равен магнитному потоку, проходящему через площадку в 1 см 2 , расположенную перпендикулярно к линиям индукции магнитного поля, при индукции, равной 1 гс; 1 мкс= 10 -8 вб (вебера) - единицы магнитного тока в системе СИ мкс Mx
Магнитная индукция Гаусс - единица измерения в системе СГС; 1 гс есть индукция такого поля, в котором прямолинейный проводник длиной 1 см, расположенный перпендикулярно вектору поля, испытывает силу в 1 дин, если по этому проводнику протекает ток в 3·10 10 единиц СГС; 1 гс=1·10 -4 тл (тесла) гс Gs
Напряженность магнитного поля Эрстед - единица напряженности магнитного поля в системе CГC; за один эрстед (1 э) принята напряженность в такой точке поля, в которой на 1 электромагнитную единицу количества магнетизма действует сила в 1 дину (дин);
1 э=1/4π·10 3 а/м
э Oe
Индуктивность Сантиметр - единица индуктивности в системе СГС; 1 см= 1·10 -9 гн (генри) см cm
Электрическая емкость Сантиметр - единица емкости в системе СГС = 1·10 -12 ф (фарады) см cm
IV. Сила света, световой поток, яркость, освещенность
Сила света Свеча - единица силы света, Значение которой принимается таким, чтобы яркость полного излучателя при температуре затвердевания платины была равна 60 св на 1 см 2 св cd
Световой поток Люмен - единица светового потока; 1 люмен (лм) излучается в пределах телесного угла в 1 стер точечным источником света, обладающим во всех направлениях силой света в 1 св лм lm
Люмен-секунда - соответствует световой энергии, образуемой световым потоком в 1 лм, излучаемым или воспринимаемым за 1 сек лм·сек lm·sec
Люмен-час равен 3600 люмен-секундам лм·ч lm·h
Яркость Стильб- единица яркости в системе СГС; соответствует яркости плоской поверхности, 1 см 2 которой дает в направлении, перпендикулярном к этой поверхности, силу света, равную 1 се; 1 сб=1·10 4 нт (нит) (единица яркости в системе СИ) сб sb
Ламберт - внесистемная единица яркости, производная от стильба; 1 ламберт=1/π ст= 3193 нт
Апостильб= 1/π св/м 2
Освещенность Фот - единица освещенности в системе СГСЛ (см-г-сек-лм); 1 фот соответствует освещенности поверхности в 1 см 2 равномерно распределенным световым потоком в 1 лм; 1 ф=1·10 4 лк (люкс) ф ph
V. Интенсивность радиоактивного излучения и дозы
Интенсивность Кюри - основная единица измерения интенсивности радиоактивного излучения, кюри соответствующая 3,7·10 10 распадам в 1 сек. любого радиоактивного изотопа
кюри C или Cu
милликюри= 10 -3 кюри, или 3,7·10 7 актов радиоактивного распада в 1 сек. мкюри mc или mCu
микрокюри= 10 -6 кюри мккюри μ C или μ Cu
Доза Рентген - количество (доза) рентгеновых или γ -лучей, которое в 0,001293 г воздуха (т. е. в 1 см 3 сухого воздуха при t° 0° и 760 мм рт. ст.) вызывает образование ионов, несущих одну электростатическую единицу количества электричества каждого знака; 1 р вызывает образование 2,08·10 9 пар ионов в 1 см 3 воздуха р r
миллирентген = 10 -3 p мр mr
микрорентген = 10 -6 p мкр μr
Рад - единица поглощенной дозы любого ионизирующего излучения равна рад 100 эрг на 1 г облучаемой среды; при ионизации воздуха рентгеновыми или γ-лучами 1 р равен 0,88 рад, а при ионизации тканей практически 1 р равен 1 рад рад rad
Бэр (биологический эквивалент рентгена) - количество (доза) любого вида ионизирующих излучений, вызывающее такой же биологический эффект, как и 1 р (или 1 рад) жестких рентгеновых лучей. Неодинаковый биологический эффект при равной ионизации разными видами излучений привел к необходимости введения еще одного понятия: относительной биологической эффективности излучений -ОБЭ; зависимость между дозами (Д) и безразмерным коэффициентом (ОБЭ) выражается как Д бэр =Д рад ·ОБЭ, где ОБЭ=1 для рентгеновых, γ-лучей и β -лучей и ОБЭ=10 для протонов до 10 Мэв, быстрых нейтронов и α-ча стиц естественных (по рекомендации Международного конгресса радиологов в Копенгагене, 1953) бэр, рэб rem

Примечание. Кратные и дольные единицы измерения, за исключением единиц времени и угла, образуются путем их умножения на соответствующую степень числа 10, а их названия присоединяются к наименованиям единиц измерения. Не допускается применение двух приставок к наименованию единицы. Например, нельзя писать миллимикроватт (ммквт) или микромикрофарада (ммф), а необходимо писать нановатт (нвт) или пикофарада (пф). Не следует применять приставок к наименованиям таких единиц, которые обозначают кратную или дольную единицу измерения (например, микрон). Для выражения продолжительности процессов и обозначения календарных дат событий допускается применение кратных единиц времени.

Важнейшие единицы международной системы единиц (СИ)

Основные единицы
(длина, масса, температура, время, сила электрического тока, сила света)

Наименование величины Обозначения
русское международное
Длина Метр - длина, равная 1650763,73 длин волн излучения в вакууме, соответствующая переходу между уровнями 2р 10 и 5d 5 криптона 86 *
м m
Масса Килограмм - масса, соответствующая массе международного эталона килограмма кг kg
Время Секунда - 1/31556925,9747 часть тропического года (1900) ** сек S, s
Сила электрического тока Ампер - сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2·10 -7 н на каждый метр длины а A
Сила света Свеча - единица силы света, значение которой принимается таким, чтобы яркость полного (абсолютно черного) излучателя при температуре затвердевания платины была равна 60 се на 1 см 2 *** св cd
Температура (термодинамическая) Градус Кельвина (шкала Кельвина) - единица измерения температуры по термодинамической температурной шкале, в которой для температуры тройной точки воды**** установлено значение 273,16° К °К °K
* Т. е. метр равен указанному числу волн излучения с длиной волны 0,6057 мк, полученного от специальной лампы и соответствующего оранжевой линии спектра нейтрального газа криптона. Такое определение единицы длины позволяет воспроизводить метр с наибольшей точностью, а главное, в любой лаборатории, имеющей соответствующее оборудование. При этом отпадает необходимость в периодической проверке стандартного метра с его международным эталоном, хранящимся в Париже.
** Т. е. секунда равна указанной части интервала времени между двумя последовательными прохождениями Землей на орбите вокруг Солнца точки, соответствующей весеннему равноденствию. Это дает большую точность в определении секунды, чем определение ее как части суток, поскольку длительность суток меняется.
*** Т. е. за единицу принята сила света определенного эталонного источника, испускающего свет при температуре плавления платины. Прежний международный эталон свечи составляет 1,005 нового эталона свечи. Таким образом, в пределах обычной практической точности их значения можно считать совпадающими.
**** Тройная точка - температура таяния льда при наличии над ним насыщенного водяного пара.

Дополнительные и производные единицы

Наименование величины Единицы измерения; их определение Обозначения
русское международное
I. Плоский угол, телесный угол, сила, работа, энергия, количество теплоты, мощность
Плоский угол Радиан - угол между двумя радиусами круга, вырезающий на окружности рад дугу, длина которой равна радиусу рад rad
Телесный угол Стерадиан - телесный угол, вершина которого расположена в центре сферы стер и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы стер sr
Сила Ньютон- сила, под действием которой тело с массой в 1 кг приобретает ускорение, равное 1 м/сек 2 н N
Работа, энергия, количество теплоты Джоуль - работа, которую совершает действующая на тело постоянная сила в 1 н на пути в 1 м, пройденном телом в направлении действия силы дж J
Мощность Ватт - мощность, при которой за 1 сек. совершается работа в 1 дж Вт W
II. Количество электричества, электрическое напряжение, электрическое сопротивление, электрическая емкость
Количество электричества, электрический заряд Кулон - количество электричества, протекающее через поперечное сечение проводника в течение 1 сек. при силе постоянного тока в 1 а к C
Электрическое напряжение, разность электрических потенциалов, электродвижущая сила (ЭДС) Вольт - напряжение на участке электрической цепи, при прохождении через который количества электричества в 1 к совершается работа в 1 дж в V
Электрическое сопротивление Ом - сопротивление проводника, по которому при постоянном напряжении на концах в 1 в проходит постоянный ток в 1 а ом Ω
Электрическая емкость Фарада- емкость конденсатора, напряжение между обкладками которого меняется на 1 в при зарядке его количеством электричества в 1 к ф F
III. Магнитная индукция, поток магнитной индукции, индуктивность, частота
Магнитная индукция Тесла- индукция однородного магнитного поля, которое на участок прямолинейного проводника длиной в 1 м, помещенного перпендикулярно направлению поля, действует с силой в 1 н при прохождении по проводнику постоянного тока в 1 а тл T
Поток магнитной индукции Вебер - магнитный поток, создаваемый однородным полем с магнитной индукцией в 1 тл через площадку в 1 м 2 , перпендикулярную направлению вектора магнитной индукции вб Wb
Индуктивность Генри - индуктивность проводника (катушки), в котором индуктируется ЭДС в 1 в при изменении тока в нем на 1 а за 1 сек. гн H
Частота Герц - частота периодического процесса, у которого за 1 сек. совершается одно колебание (цикл, период) Гц Hz
IV. Световой поток, световая энергия, яркость, освещенность
Световой поток Люмен - световой поток, который дает внутри телесного угла в 1 стер точечный источник света в 1 св, излучающий одинаково во всех направлениях лм lm
Световая энергия Люмен-секунда лм·сек lm·s
Яркость Нит - ярность светящейся плоскости, каждый квадратный метр которой дает в направлении, перпендикулярном плоскости, силу света в 1 св нт nt
Освещенность Люкс - освещенность, создаваемая световым потоком в 1 лм при равномерном его распределении на площади в 1 м 2 лк lx
Количество освещения Люкс-секунда лк·сек lx·s

Строившаяся в - годах венгерским заводом Ганц-МАВАГ (венг. Ganz–MÁVAG ), Будапешт , по заданию Министерства путей сообщения для железных дорог СССР . Всего было построено 605 составов. Конструкционно Д 1 являлись усовершенствованной версией дизель-поездов серии Д и отличались от последних прежде всего наличием более мощного дизельного двигателя, гидромеханической передачи и составностью, увеличенной на один прицепной вагон.

Начиная с 1964 года, дизель-поезда эксплуатировались на Горьковской , Донецкой , Московской , Львовской , Одесско-Кишинёвской , Октябрьской , Прибалтийской , Юго-Восточной железных дорогах для организации пригородного и местного пассажирского сообщения на неэлектрифицированных и частично электрифицированных участках, и являлись наряду с ДР1 одной из основных серий советских дизель-поездов. По состоянию на на территории России больше не эксплуатируются. Эксплуатация продолжается на Одесской , Львовской, Донецкой и Молдавской железных дорогах .

История создания и эксплуатации

Предпосылки к появлению, предэксплуатационные испытания

Завод Ганц-МАВАГ являлся одним из основных поставщиков дизель-поездов для железных дорог СССР, наряду с Рижским вагоностроительным заводом . Первые венгерские дизель-поезда поступили в Советский Союз после Великой Отечественной войны в качестве репараций . В конце 1950-х - начале 1960-х годов Министерством путей сообщения был намечен курс на переход от паровой тяги к электрической и тепловозной, в связи с чем в 1960 году заводу Ганц-МАВАГ , с целью замены паровой тяги в пригородном движении на участках, не подлежащих в ближайшие годы электрификации, дизельной моторвагонной, был выдан заказ на выпуск трёхвагонных дизель-поездов серии Д . В ходе эксплуатации был выявлен их основной недостаток - недостаточная пассажировместимость. В связи с этим завод Ганц-МАВАГ в 1963 году приступил к параллельному выпуску четырёхвагонных дизель-поездов серии Д 1 (дизель-поезда № 201-295 также имели внешний индекс «Д»). Выпуск дизель-поездов Д 1 продолжался до 1988 года .

Поставки поездов в СССР осуществлялись при участии «Машиноимпорта» с 1964 по 1988 годы через пограничные станции Захонь и Чоп. Первая партия из пяти поездов поступила в Советский Союз в середине 1964 года, после чего была направлена для поднадзорной эксплуатации на Прибалтийскую железную дорогу . Последние поезда серии был поставлены в СССР в апреле 1988 года .

В сентябре 1964 года дизель-поезд № 202 был отправлен на проведение тягово-энергетических испытаний в ЦНИИ МПС . Наибольшая мощность была достигнута на пятой позиции контроллера машиниста при движении на второй ступени передачи со скоростью 83,5 км/ч и составила 1230 л. с. (84 % общей номинальной мощности двух дизелей), при этом был достигнут наибольший коэффициент полезного действия - 29,8 % .

Сведения о постройке

Выпуск дизель-поездов серии Д 1 проходил в период с 1964 по 1988 годы. Всего было построено 605 поездов (номерной диапазон 201-805), 2540 вагонов (в том числе 1210 моторных и 1330 прицепных). Моторные вагоны дизель-поездов Д 1 строились на заводе Ганц-МАВАГ, там же строились прицепные вагоны в диапазонах 201-205 и 661-685. Прицепные вагоны в диапазоне 206-660 (1964-1982) строились вагоностроительным заводом Rába Magyar Vagon- és Gépgyár , Дьер (Венгерская Народная Республика). После 1982 года (Д 1 −686) в рамках кооперации между странами СЭВ производство прицепных вагонов было переведено на завод Astra Vagoane, Арад (Социалистическая Республика Румыния). В диапазоне 581-640 (1976-1978) выпускались дополнительные прицепные вагоны с номерами 6 и 8 .

Эксплуатация

Дизель-поезда Д 1 поступили в эксплуатацию на Горьковскую (Горький-Моск., Юдино, Казань; последние годы массово передавались на порезку в депо Тумская), Донецкую (Сватово, Сентяновка, Попасная, Родаково, Дебальцево-Пасс., Иловайск), Московскую (Смоленск, Узловая, Калуга, Льгов), Львовскую (Чоп, Здолбунов, Коломыя, Королёво), Одесско-Кишинёвскую (Христиновка, Николаев, им. Шевченко, Одесса заст., Кишинёв), Октябрьскую (Выборг, Новгород, Ленинград-Варш.), Прибалтийскую (Вильнюс, Радвилишкис, Тарту, Таллин-Вяйке, Калининград), Юго-Восточную (Отрожка, Тамбов-1) железные дороги. По состоянию на 1 января 1976 года, на железных дорогах Советского Союза эксплуатировался 371 дизель-поезд Д 1 , из них на Горьковской - 46, Донецкой - 53, Московской - 54, Львовской - 40, Одесско-Кишинёвской - 61, Октябрьской - 20, Прибалтийской - 79, Юго-Восточной - 18 . Д 1 использовались для организации пригородного и местного пассажирского сообщения на неэлектрифицированных и частично электрифицированных (где пункт отправления был электрифицирован, а пункт прибытия не был, например Одесса - Кишинев) участках. На Смоленском, Казанском, Кишинёвском, Одесском, Вильнюсском, Калининградском и других узлах почти все пригородные и часть местных пассажирских перевозок обслуживались дизель-поездами.

По состоянию на 1 января 1992 года, на железных дорогах бывшего СССР находилось 472 дизель-поезда Д 1 .

Эксплуатация дизель-поездов поздних номеров выявила недостаточную надёжность работы заводской силовой передачи, связанную с поломками дисков 3-й скорости. Управлением локомотивного хозяйства было рекомендовано глушить трубки включения 3-й скорости. В 1980-1990-х годах специалистами ВНИИЖТа был проведён комплекс работ по изучению возможности замены силовой установки дизель-поезда . Проект модернизации предусматривал замену заводской гидромеханической передачи НМ612-22 на гидродинамическую типа ГДП 750/201 и заводского дизеля 2VFE 17/24 на дизель типа М773А (12ЧН 18/20). Модифицированные таким образом на Великолукском локомотиворемонтном заводе в период с 1995 по 2002 годы дизель-поезда получили обозначение Д 1 м .

Эксплуатация дизель-поездов Д 1 на железных дорогах постепенно завершается. В 2001 году эксплуатация дизель-поездов Д 1 прекращена на Эстонской железной дороге (EVR), в 2004 - на Октябрьской, в 2007 - на Юго-Восточной, в 2008 - на Литовских железных дорогах (LG), в 2011 - на Калининградской , в 2013 - на Московской . По состоянию на 1 января 2012 года, на железных дорогах СНГ эксплуатировалось (в пассажирском сообщении) 68 дизель-поездов Д 1 , из них на Московской - 4 (Новомосковск-I), Одесской - 17 (им. Шевченко, Христиновка, Николаев), Львовской - 32 (Здолбунов, Коломыя, Чоп), Донецкой - 15 (Сватово, Иловайск), Молдавской - 20 (Кишинёв). Часть дизель-поездов и построенных на их базе мотрис используется для служебных нужд . Эксплуатация Д 1 в России прекращена в 2013 году. На балансе депо Новомосковск остался один Д 1 под номером 748, который на данный момент находится в глубоком резерве. Возобновления эксплуатации не планируется. Несмотря на тот факт, что дизель-поезда прошли в Жмеринке КР-2 с модернизацией, в депо Новомосковск отсутствует технология для ремонта в объемах ТР-3, поэтому все поезда, имеющие пробег, требующий проведение подобного ремонта - отставляются от эксплуатации и исключаются из инвентаря.

Железная дорога Молдовы в 2012 году заключила контракт с фирмой Remar (Румыния) на ремонт и модернизацию дизель-поездов Д 1 , в ходе которого заменялась силовая установка, гидропередача, интерьер салона. Первый из поездов (Д 1 -737 выпуска 1985 года) прошёл ремонт и вернулся для эксплуатации в июне 2012 года. Однако качество проведённого ремонта оценивается как неудовлетворительное . Модифицированные таким образом в 2012-2013 годах поезда получили обозначение D1M .

Общие сведения

Дизель-поезда Д 1 предназначены для пригородных пассажирских перевозок на неэлектрифицированных железнодорожных линиях колеи 1520 мм с низкими и высокими платформами.

Составность

Дизель-поезд состоит из двух головных моторных вагонов и двух промежуточных прицепных вагонов ; также может эксплуатироваться в пятивагонной и шестивагонной составности с тремя и четырьмя прицепными вагонами. За одну учётную моторвагонную секцию четырёхвагонного поезда принимается один моторный и один прицепной вагон, шестивагонного - один моторный и два прицепных вагона . Предусмотрена эксплуатация двух соединённых дизель-поездов по системе многих единиц .

Технические характеристики

Основные параметры для четырёхвагонного дизель-поезда серии Д 1 :

  • Масса :
    • Поезда (экипировка) - 210 т;
    • Поезда (рабочая) - 274 т;
    • Моторного вагона - 65,6 т;
    • Прицепного вагона - 37,0 т;
  • Длина по осям автосцепок :
    • Поезда - 99 080 мм;
    • Моторного вагона - 25 000 мм;
    • Прицепного вагона - 24 540 мм;
  • Число сидячих мест - 400;
  • Часовая мощность главных дизелей - 2×730 л. с.;
  • Конструкционная скорость - 126,7 км/ч;
  • - 17 тс;
  • Минимальный радиус проходимых кривых - 100 м;
  • Ускорение при пуске - 0,3-0,4 м/с 2 ;
  • Запас топлива - 2×1200 л;
  • Запас песка - 2×160 кг.

Осевую формулу состава можно условно написать в следующем виде:

  • для составов с номерами от 201 до 375: (1 0 -1-1 0 +2)+N×(2-2)+(2+1 0 -1-1 0);
  • для составов с номерами от 376 до 805: (1-2 0 +2)+N×(2-2)+(2+2 0 -1).

где N - число прицепных вагонов (от 0 до 2).

Примечание В данном случае осевые формулы приведены условно - в формате, близком к применяемому в СССР и России, поскольку советский формат не позволяет отображать наличие разных осей в одной тележке. Более правильным будет написание тех же формул в формате UIC :

  • для составов с номерами от 201 до 375: (A 0 1A 0 -2)+N×(2-2)+(2-A 0 1A 0);
  • для составов с номерами от 376 до 805: (1B 0 -2)+ N×(2-2)+(2-B 0 1).

Нумерация и маркировка

Дизель-поезда № 201-299 имели внешний индекс «Д». Индекс «Д 1 » стал указываться с поезда № 300, однако на внутривагонных табличках индекс «Д» указывался до конца выпуска. Номерные таблички помимо названия серии и номера состава содержат также номер вагона. При этом моторные головные вагоны одного поезда всегда получали нечётное номерное расширение (1, 3 и 5 (За всю историю выпуска выпущен один головной вагон с номером 5, взамен головного вагона, сгоревшего из-за заводского брака), а прицепные промежуточные - чётное (2 и 4, а в случае наличия в составе поезда дополнительных прицепных вагонов - также 6 и 8). Снаружи на торцевой части вагонов на уровне пола крепились также заводские таблички, содержащие год изготовления, а прицепных вагонов постройки Rába - также и заводской номер. На вагоны дизель-поездов наносились также восьмизначные коды . Первая цифра всегда равна 1, вторая кодирует тип подвижного состава (7, дизель-поезд), третья цифра - род службы (0, пассажирский). Четвёртая цифра означает: 2 - прицепной вагон до Д 1 −500, 3 - головной вагон до Д 1 −500, 4 - прицепной вагон с Д 1 −500, 5 - головной вагон с Д 1 −500. С пятого по седьмой знаки кодируют номер, восьмой - контрольный .

Конструкция

Кузов

Главная рама - цельнометаллическая несущая конструкция, воспринимающая вес кузовного оборудования и служащая для передачи тягового и тормозного усилий, динамических и ударных нагрузок, возникающих при движении поезда. Рама моторного вагона состоит из лобовой, промежуточной и концевой частей. Лобовая часть рамы состоит из сварных балок , усиленных рёбрами и поясными листами; в раме был предусмотрен проём, служивший для установки дизеля на моторную тележку. Промежуточная часть рамы состоит из боковых, средних продольных, поперечных и шкворневых балок. Концевая часть рамы состоит из буферной и поперечной балок, раскосов. Конструкция рамы промежуточного вагона аналогична, за исключением отсутствия в ней лобовой части .

Кузов вагонов представляют собой жёсткую цельнонесущую сварную металлическую конструкцию, располагающуюся на раме и служащую для размещения пассажиров и оборудования и их защиты от атмосферных воздействий. Кузов вагонов дизель-поезда изготавливался из продольных и поперечных элементов, покрытых стальным листом. Боковая станка кузова состоит из скреплённых между собой оконных и дверных стоек, к которым крепились гладкие стальные листы. Крыша изготавливалась из скреплённых между собой продольных балок и поперечных дуг, к которым также крепились гладкие стальные листы . Кузова вагонов были рассчитаны для эксплуатации дизель-поезда на участках с низкими платформами, однако могли быть приспособлены для эксплуатации на участках с высокими платформами. По концам рамы размещались автосцепки СА-3 с фрикционными аппаратами ЦНИИ-Н6 и метельники . Входные двери раздвижные двустворчатые, имеют пневматический привод, управляются электропневматически из кабины машиниста .

    Рамы тележек - сварной конструкции. Нагрузка от кузова на движущие тележки, не имевшие шкворня , передаётся через два направляющих скользуна. Движущими колёсными парами трёхосной тележки изначально являлись две крайних. Средняя поддерживающая ось была изогнута и не вращалась, на её конусах размещались роликовые подшипники, на которые устанавливались колеса. Двухосные тележки, помимо скользунов, имеют центральный шкворень. Нагрузка от рамы тележки на буксы передаётся через цилиндрические пружины, опирающиеся на подбуксовые балансиры. Все колёса дизель-поезда были выполнены бандажными и имели диаметр по кругу катания без износа 950 мм. Буксы комплектовались роликовыми сферическими подшипниками фирмы SKF (Швеция) .

    Дизельный двигатель

    На дизель-поезд устанавливался двенадцатицилиндровый четырёхтактный бескомпрессорный предкамерный дизельный двигатель системы Ганц - Ендрашик типа 12 VFE 17/24, номинальной мощностью 730 л. с. (538 кВт), номинальная частота вращения вала 1250 об/мин (минимальная - 530 об/мин). Цилиндры расположены V-образно (угол развала 40°) и имеют диаметр 170 мм, ход поршней - 240 мм, рабочий объём 65,3 л. Цилиндровый блок , картер и поддон дизеля изготавливались из силумина , поршни - из алюминиевого сплава , коленчатый вал - из легированной стали . В двигателе реализован газотурбинный наддув с промежуточным охлаждением наддувочного воздуха. Удельный расход топлива при номинальной мощности составляет 168 г/э. л. с. ч; масса сухого дизеля - 4600 кг. Пуск дизеля осуществляется при помощи стартера от аккумуляторной батареи . Порядок работы цилиндров - 1-4-2-6-3-5 (левый ряд), 6-3-5-1-4-2 (правый ряд) .

    Силовая передача

    Электрооборудование

    Основное предназначение электрооборудования на дизель-поездах с гидравлической и механической передачами - автоматизация управления. Для пуска дизеля на каждом двигателе установлено два электростартера типа AL-FTB, представляющих собой электродвигатели постоянного тока со смешанным возбуждением . Для зарядки аккумуляторной батареи, питания цепей управления и освещения используются генератор типа EDZ-69I4R, генератор EH-261, питающий вентилятор типа EHF-262 холодильника, электродвигатели систем подачи топлива и вентиляции . Аккумуляторная батарея служит для пуска дизеля и питания цепей освещения и управления при неработающем дизеле. Аккумуляторная батарея дизель-поезда Д 1 железо-никелевая типа 2SK-400 ёмкостью 400 А ч (напряжение 48 В) . Электрические аппараты служат для управления оборудованием, его защиты от ненормальных режимов, поглощения электрической энергии, приведения в действие вспомогательных механизмов. На дизель-поезде устанавливались контроллер машиниста типа KV6/VII, электромагнитные контакторы, реле и регуляторы различных типов , а также другое оборудование.

    Тормозное оборудование

    Тормоз моторной тележки состоит из двух одинаковых независимых систем, расположенных симметрично относительно рамы. В каждую тормозную систему входят тормозной цилиндр диаметром 10″ и автоматический регулятор рычажной передачи типа SAB-300. Под действием сжатого воздуха шток тормозных цилиндров поворачивает рычаг, который через горизонтальную тягу, кривошипы и систему рычагов прижимает тормозные колодки к колёсам. При отпуске тормоза система приводится в исходное положение при помощи оттяжной пружины. При износе тормозных колодок в ходе эксплуатации регулятор автоматически стягивает передачу и распускает её после замены новыми, что обеспечивает выход штока тормозного цилиндра в пределах 100…150 мм. Передаточное отношение рычажной системы составляет 8,53. Расчётная сила тормозного нажатия на ось составляет 10 тс (до Д 1 −376 - 12 тс). Ручной тормоз приводится в действие рукоятью, через вертикальную тягу поворачивая тормозной вал, соединённый балкой с рычажной системой. Передаточное отношение привода ручного тормоза составляет 1100, тормозное нажатие на ось - 8 тс .

    Тормоз поддерживающей тележки не разделён на группы, в него входят тормозной цилиндр диаметром 12″ и автоматический регулятор SAB-300, обеспечивающий выход штока ок. 130 мм. Под действием сжатого воздуха тормозное усилие передаётся через регулятор, горизонтальную тягу и систему рычагов к колёсным парам. Передаточное отношение системы составляет 6,07. Расчётная сила тормозного нажатия на ось тележки прицепного вагона составляет 8 тс (до Д 1 −376 - 12 тс). Устройство ручного тормоза аналогично описанному выше. Передаточное отношение привода ручного тормоза составляет 991, тормозное нажатие на ось - 7 тс .

    Системы

    Топливная система дизель-поезда предназначена для питания двигателя топливом, его хранения и очистки. Топливная система включает в себя главный топливный бак объёмом 1,20 м³, расходный топливный бак объёмом 0,08 м³, топливоподкачивающий насос, фильтр очистки и систему трубопроводов . Запас топлива в топливной системе дизель-поезда - 2×1200 л. Масляная система предназначена для хранения, очистки, охлаждения масла и подвода его ко всем трущимся частям дизеля. Система включает в себя масляный бак, масляный и маслопрокачивающий насосы, фильтры грубой и тонкой очистки, водомасляный теплообменник и систему трубопроводов с клапанами и вентилями . Запас масла в системе дизельного двигателя - 0,2 м³, в гидропередаче - 0,21 м³. Система охлаждения предназначена для охлаждения масла дизеля и передачи и состоит из холодильника площадью охлаждения 204 м², теплообменника масла передачи, теплообменника масла дизеля, водяного бака, насосов и системы трубопроводов . Запас воды в системе охлаждения - 1,20 м³. Воздушная система обеспечивает работу тормозной системы, дизеля, гидромеханической передачи, песочниц, раздвижных дверей. Система включает в себя компрессор, холодильник, напорную магистраль, воздушные резервуары . Система отопления и вентиляции дизель-поезда - приточная. Моторный и прицепной вагоны имеют единую отопительно-вентиляционную систему. Естественная вентиляция осуществляется потолочными вытяжными дефлекторами , сходными по конструкции с дефлекторами типа ЦАГИ цельнометаллических пассажирских вагонов. Принудительная вентиляция осуществляется при помощи вентиляционной установки. Наружный воздух поступает в камеру смешения через заборные жалюзи, расположенные на боковой стенке моторного вагона, и подаётся в пассажирское помещение двумя вентиляторами. Подогрев воздуха осуществляется при помощи калорифера , к которому по системе трубопроводов подаётся нагретая вода системы охлаждения двигателей. При неработающем дизеле для подогрева воздуха используется котёл-подогреватель . Система пожаротушения включает в себя два пожарных резервуара, пеногенераторы, краны и резиновые рукава длиной до 12 м, что позволяет ликвидировать очаги возгорания как на поезде, так и на ближайших к нему объектах. Установка располагается в машинном отделении моторного вагона и приводится в действие сжатым воздухом . Система водоснабжения - самотечная, оборудована одним баком объёмом 350 л, располагающимся над потолком в туалете. Рядом с баком проходит канал тёплого воздуха, что предохраняет его от замерзания. Для питьевой воды предназначен отдельный бак объёмом 30 л .

    Изменения в конструкции

    Интерьер вагонов

    Кабина управления имеет три лобовых стекла и по одному боковому с каждой стороны. Пульт управления и кресло машиниста расположены с правой стороны кабины, кресло помощника машиниста - с левой стороны.

    На пульте управления машиниста были расположены контроллер машиниста , реверсивная рукоятка, тормозной кран, тахометры оборотов двигателей, дистанционный термометр, амперметр, вольтметр, электрический скоростемер , сигнальные лампы и другие приборы. На боковой панели справа от места машиниста располагались манометры давления масла в масляной системе дизеля, гидропередаче и манометры давления воздуха в резервуаре управления, главной и тормозной магистралях, тормозном цилиндре и уравнительном резервуаре. Выше боковой панели располагался щиток с указанием неисправностей.

    Контроллер машиниста типа KV6/VII имеет реверсивную рукоятку и главную с позициями О , А , В , 1 , 2 , 3 , 4 и 5 . В положении О все аппараты управления выключены, все цепи обесточены; в положении А осуществляются реверсирование, маневрирование, пуск дизеля; в положении В частота вращения коленчатого вала увеличивается с 530 до 830 об/мин, дизель работает на холостом ходу; на позициях 1 -5 включается режим тяги и последовательно увеличивается частота вращения вала дизеля. Реверсивная рукоятка имеет имеет пять положений: нулевое , Вперед , Вперед Fk , Назад , Назад Fk .

    Обслуживание дизель-поезда

    Экипировка

    Экипировкой дизель-поезда является комплекс работ по подготовке состава к выходу на маршрут следования. В зависимости от конкретного графика движения, экипировка дизель-поезда производится в оборотном или основном депо. В ходе экипировки дизель-поезд снабжают топливом, маслом, водой и песком, подготовленными в соответствии с ведомственными инструкциями. Для экипировки дизель-поездов используются типовые устройства тепловозного хозяйства за исключением пескораздаточных устройств, у которых следует удлинить пескозаправочные рукава. Время совмещённой экипировки дизель-поезда составляет 50-60 минут. Во время простоя поезда в депо, не реже одного раза в двое суток, состав обмывают снаружи, для чего могут использоваться стационарные вагономоечные установки или передвижные машины, не реже одного раза в сутки проводят влажную уборку пассажирских салонов .

    Техническое обслуживание и ремонт

    Техническим обслуживанием дизель-поезда является комплекс работ по поддержанию состава в состоянии технической исправности и готовности к работе. В соответствии с указанием ОАО «РЖД » № 622р от 6 апреля 2006 года и приказа УЗ № 030ЦЗ от 31 мая 2005 года, периодичность технического обслуживания дизель-поезда Д 1 устанавливалась: в объёме ТО-1 - при приёмке и сдаче поезда; в объёме ТО-2 - не более 48 часов; в объёме ТО-3 - не более 10 суток.

    Ремонт дизель-поезда включает комплекс работ по восстановлению исправности и работоспособности состава. В соответствии с теми же приказами, периодичность текущего ремонта дизель-поезда Д 1 устанавливалась: в объёме ТР-1 - 2 месяца; в объёме ТР-2 - каждые 75 000 км, но не более 7,5 месяцев; в объёме ТР-3 - каждые 150 000 км, но не более 15 месяцев. Текущий ремонт дизель-поездов производится в тепловозных депо. В депо ремонт осуществляется в одних цехах с тепловозами, при этом длина цеха для ТО-3 и ТР-1 должна быть достаточной для размещения состава без расцепки вагонов. В депо, производящих ремонт в объеме ТР-3, также предусматриваются участки для ремонта дизелей, передач и редукторов вспомогательных машин. Капитальный ремонт дизель-поездов выполняют на ремонтных заводах. Периодичность капитального ремонта устанавливалась: в объёме КР-1 - 600 000 км, но не более 5 лет; в объёме КР-2 - 1 200 000 км, но не более 10 лет . Капитальный ремонт дизель-поездов Д 1 проводили в том числе Великолукский локомотивовагоноремонтный , Жмеринский вагоноремонтный и Даугавпилсский локомотиворемонтный заводы .

    Работа по системе многих единиц

    Предусмотрена эксплуатация двух соединённых дизель-поездов по системе многих единиц с одного поста управления. Для возможности соединения двух поездов на лобовой части моторных вагонов размещены две 30-клеммные розетки и два кабеля межпоездного соединения со штепселями по концам. При сцеплении двух поездов штепсели вставляются в розетки, что обеспечивает сборку основных цепей всех моторных вагонов. В связи с имеющимися различиями в электрических схемах дизель-поездов разных выпусков, указанием Управления локомотивного хозяйства МПС № 266 ЦТ Теп от 22 октября 1969 года работа по системе многих единиц разрешается в зависимости от группы поезда. К первой группе отнесены поезда номерного диапазона 201-255, ко второй - № 256-355, к третьей - № 356-375, к четвёртой - поезда с номера 376. Поезда одной группы могут работать по системе двух единиц без ограничений. При сцеплении поезда третьей группы с поездами первой и второй групп разрешается езда только на пневматических тормозах. При сцеплении поездов первой и второй групп, а также поездов четвёртой группы с поездами остальных групп ограничение по тормозам отсутствует. При сцеплении поездов первой группы с поездами других групп нарушаются синхронизация компрессоров и работа песочниц на прицепленном дизель-поезде